
WRITING EXTENSIBLE AND 
MAINTAINABLE CODE IN AN 

ACADEMIC SETTING

Matthew Giammar

3/18/24 1



PRESENTATION OVERVIEW

1. Why make code flexible and extensible?

2. Good vs bad code, with examples!

3. Shared projects with git and GitHub.

4. When and when not to spend time improving code.

2



PRESENTATION OVERVIEW

1. Why make code flexible and extensiable?

2. Good vs bad code, with examples!

3. Shared projects with git and GitHub.

4. When and when not to spend time improving code.

3



FLEXIBILITY AND 
EXTENSIBILITY

4

Flexible code can easily be swapped out 
with equivalent pieces in the future

Extensibility means new functionality can 
be added on with minimal effort

OOP and single responsibility principals 
help make code flexible and extensible

Flexibility

Extensibility



FLEXIBILITY AND 
EXTENSIBILITY

5

Flexible code can easily be swapped out 
with equivalent pieces in the future

Extensibility means new functionality can 
be added on with minimal effort

OOP and single responsibility principals 
help make code flexible and extensible

Not extensible



SINGLE RESPONSIBILITY 
PRINCIPLE

• Each class and method should exist for one 
single purpose; nothing is overly complex

• Clear information flow between objects in 
larger programs

• Disentanglement makes code flexible and 
extensible

6



7

Image credit: Daniel Harper

CLEAR & FLEXIBLE VS MESSY 



BENEFITS OF FLEXIBLE 
CODE

8

Update workflows as new methods arise

Single-responsibility principle makes 
understanding code easier

Increases longevity of codebase



PRESENTATION OVERVIEW

1. Why make code flexible and extensible?

2. Good vs bad code, with examples!

3. VS code + extensions are your friend.

4. Shared projects with git and GitHub.

5. When and when not to spend time improving code.

9



GOOD VS BAD CODE

• Easily understandable with clear variable 
and function names

• Complex portions well commented

• Flexible, extensible, and maintainable

• Associated documentation and example 
use cases

• Overly short and unclear variable names

• Difficult to understand how pieces of 
code work together

• Sparse and uninformative comments

• Highly intertwined workflows and 
unclear documentation

10

Good Bad



11



11



11

Bad



12



12

OFFICIAL PYTHON SOURCE CODE



12

OFFICIAL PYTHON SOURCE CODE

Good



13



13



13

Good



14



14

Chat-GPT
Prompt: Write some poor Python code for running a physics simulation



14

Chat-GPT
Prompt: Write some poor Python code for running a physics simulation

Bad?



15



PRESENTATION OVERVIEW

1. Why make code flexible and extensible?

2. Good vs bad code, with examples!

3. Shared projects with git and GitHub.

4. When and when not to spend time improving code.

16



GIT

17

• Git is a popular version control 
software package widely used in 
software development fields

• Tracks file changes between commits

• Multiple users can contribute to one 
main set of source code

• Versioning allows backtracking if you 
make a mistake or break something



HOW TO USE GIT

• Make or download a git repository (git init / git clone <url>)

• Change and add files to staging (git add <file>)

• Add new node to version history by making a commit (git commit)

• Use the VS Code extension! Great official tutorial online

18



HOW TO USE GIT

• Make or download a git repository (git init / git clone <url>)

• Change and add files to staging (git add <file>)

• Add new node to version history by making a commit (git commit)

• Use the VS Code extension! Great official tutorial online

18



19

• Online platform for storing and 
managing code (git repositories)

• Storing code online increases 
longevity and shareability

• Can create snapshots of code at 
certain points in time

• Easily store, share, and update code 
between multiple users



20

https://vscode.github.com

https://vscode.github.com/


21



PRESENTATION OVERVIEW

1. Why make code flexible and extensible?

2. Good vs bad code, with examples!

3. Shared projects with git and GitHub.

4. When and when not to spend time improving code.

22



ACADEMIA ISN’T A SOFTWARE COMPANY

• Research fields evolve fast; code becomes outdated quickly.

• Want to check and show that methodology works, no time 
to clean up and prettify codebase.

• Disparate pieces in some pipeline may not work together 
easily; lack of common standards make code inflexible.

23



24

How many times the code will be used

How “good” the code should be



24

How many times the code will be used

How “good” the code should be

Quick and dirty
Jupyter Notebook



24

How many times the code will be used

How “good” the code should be

Quick and dirty
Jupyter Notebook

Wasting your time



24

How many times the code will be used

How “good” the code should be

Quick and dirty
Jupyter Notebook

Larger scripts and
analysis pipelines

Wasting your time



24

How many times the code will be used

How “good” the code should be

Quick and dirty
Jupyter Notebook

Larger scripts and
analysis pipelines

Small-medium sized
published packages

Wasting your time



24

How many times the code will be used

How “good” the code should be

Quick and dirty
Jupyter Notebook

Larger scripts and
analysis pipelines

Small-medium sized
published packages

Large continuously
updated packages
integral to field

Wasting your time



24

How many times the code will be used

How “good” the code should be

Quick and dirty
Jupyter Notebook

Larger scripts and
analysis pipelines

Small-medium sized
published packages

Large continuously
updated packages
integral to field

Wasting your time

Don’t do this



WHY MAKE CODE NICE 
• Spending time on good base code means 

easier to implement new code for 
interesting research directions

• Swap out or add in new code chunks as 
methods are developed

• Sharing and collaborating on code much 
easier if written in a readable manner

• Revisiting old code is much easier after 
weeks/months away

25

StackOverflow



KEY TAKEAWAYS

1. Write readable code with comments!

2. Single-responsibility and OOP makes code flexiable

3. Code editors (e.g. VS Code)come with helpful extensions 
which can make your programming life easier

4. Git and GitHub are invaluable tools for tracking and 
sharing code
• Talk to your lab about making an organization account

26



27

Image credit: xkcd



THANKS!

28


