SLiM: An Evolutionary
Simulation Framework

CompBio Skills Seminar
4/25/24

Introduction

Advantages:

e Flexibility
e Performance
e Interactive GUI

https://messerlab.org/slim/

HOME

PEOPLE

PUBLICATIONS

SLIM SOFTWARE

RESOURCES

TEACHING

PRESS

Messer Lab — SLiM

About SLiM

SLiM is an evolutionary simulation framework that combines a powerful engine for
population genetic simulations with the capability of modeling arbitrarily complex
evolutionary scenarios. Simulations are configured via the integrated Eidos scripting
language that allows interactive control over practically every aspect of the simulated
evolutionary scenarios. The underlying individual-based simulation engine is highly
optimized to enable modeling of entire chromosomes in large populations. We also provide a
graphical user interface on macOS, Linux, and Windows, for easy simulation set-up,
interactive runtime control, and dynamical visualization of simulation output.

A 4-5 day SLiM Workshop is now available online. The SLiM Workshop is also offered in
person from time to time; see the SLiM Workshops subsection below for more information.

Downloads (version 4.2.1)

i- o N o N i-
¢ 3 R

2IP

macOS Installer Source Code SLiM Manual Eidos Manual Ref Sheets

Installing on Windows machines

e Requires MSYS2 Software Distribution and Building Platform for Windows

(https://www.msys2.org/)
e Click on ‘MSYS2 MSYS’ in the Start menu
e Type ‘pacman -S mingw-w64-x86_64-slim-simulator’ in the opened command

prompt

— This should install SLiM and the SLiMgui

https://www.msys2.org/

The WF model’s tick cycle

The nonWF model’s tick cycle

0. Execution of first() events

0. Execution of first() events

1. Execution of early() events

2. Generation of offspring:

2.1. Choose source subpop

2.2. Choose parent 1

2.3. Choose parent 2
(mateChoice() callbacks)

2.4. Generate the offspring
(including mutation() and
recombination() callbacks)

1. Generation of offspring:

1.1. Call reproduction()
callbacks for individuals

1.2. The callback(s) make
calls requesting offspring

1.3. Generate the offspring
(including mutation() and
recombination() callbacks)

1.4. Suppress/modify child
(modifyChild() callbacks)

2.5. Suppress/modify child
(modifyChild() callbacks)

2. Execution of early() events

3. Removal of fixed mutations

4. Offspring become parents

3. Fitness recalculation using
mutationEffect() and
fitnessEffect() callbacks

5. Execution of late() events

4. Selection (incl. survival())

3. Fitness recalculation using
mutationEffect() and
fitnessEffect() callbacks

5. Removal of fixed mutations

6. Execution of late() events

7. Tick/cycle count increment

7. Tick/cycle count increment,
individual age increments

WF vs non-WF models

e WEF is the ‘default’ mode, non-WF is used to explicitly model various
‘advanced’ scenarios

WF vs non-WF models

e WEF is the ‘default’ mode, non-WF is used to explicitly model various
‘advanced’ scenarios

e In general, non-WF models are more individual-based, more explicit (more
control), more biologically realistic but more complex

WF vs non-WF models

e WEF is the ‘default’ mode, non-WF is used to explicitly model various
‘advanced’ scenarios

e In general, non-WF models are more individual-based, more explicit (more
control), more biologically realistic but more complex

e These models vary in the following ways:
o Age structure/overlapping generations

Offspring generation

Population regulation

Fitness

Migration

Subpopulation splits

O O O O O

Conceptual overview

Individuals and genomes:

e Individuals are diploid by default, thus each have two Genomes

0

[—1T

LI LI T 1T VI T T LT Joee

HEEEEEEEEEEEEEE

[l N Y

NN EEEEEEEEEEE

LI LI T T VI T LT Jeee

[T T TIITTITITITTTITIT] e

ol L LI T T LTI Jeee

ST TITITITITITITI I] e

HEEEEEEEEEEEEEE

Conceptual overview

Mutations and substitutions:

e Each instance of mutation (different colors) are references to the same
Mutation object

e Each Mutation instance stores a base position, selection coefficient s, and a
dominance coefficient h

0 [—1
| ST TN TTTTTTT T T)ee-OITTTTTITITTTITITT]

\‘III.IIIIIIIIIII"'III.IIIIIIIIIII

| ST T TTTTTITITT T)e--ITITTTTITTTITTITT]
ST I I I T I I T T e OO TIITIITITIIT]

| ST TTTTTTTTTT T)e--OTTHTTITTTITTITT]
I T I I I I I I I T e (T IIITITITTITITI1]

Conceptual overview

Mutations and substitutions:

e When fixed in a population, a
mutation is removed and stored as
a substitution object (default
behavior)

0

L1

| [T T I TTTTTTTTTT] "

HEEEEEEEEEEEEEE

[l 5 O O O R

LITTTTPTTTITITTT]

| [T T I TTTTTTTTTT e

(R 5 I 5 O N YR

| [T T TTTTTTTT T]

(HEEEEEEEENENEEE

I I I IITIIITI]

0

| L1 1T T T T T TTTTTTT Jeee

T I I T e OO T IT11)

| S[TTTTTTTTTTIT T)eeOOT M TTTTITTITTITT])

T I T e DT I I I I1T1]

|l 11 11T T T T I R e LIITTTTTTTITTTTL]

T I I I I T I T e (O I I T111]

Conceptual overview

Genomic elements, genomic element types, mutation types, and the
chromosome:

e The Chromosome contains genomic elements (GenomicElement), which
each have a genomic element type (GenomicElementType)

Chromosome: a mosaic of genomic elements
N N I S

Genomic element types Mutation types

non-coding [} [0 neutral
exon [beneficial
intron ——=¢ [} deleterious

Conceptual overview

Subpopulations and migration:

e Mating occurs within Subpopulations; ie. they are reproductively isolated from

other subpopulations
e This allows you to model gene flow, eg. the ‘stepping-stone’ river system

model below

Yse
7, (A

s
@%E

Conceptual overview

Subpopulations and migration:

e Using spatial layers, you can also model spatial competition or spatial mate
choice preference

Conceptual overview

Recombination and gene conversion:

e “Crossover breakpoints” model: crossover only, no gene conversion

B i E— —

v

e “Double-stranded break (DSB)” model: gene conversion

Fithess
WF models non-WF models
e Relative fitness- population e Absolute fitness- fitness
size is set by the model composition in populations
e fitness = probability an actively influences their size
individual will reproduce in e fitness = probability that an
next generation individual will survive to
reproduction (in next
generation)

Both calculate fitness per individual like this: (1+s)*(1+hs)*(1+hs)*...

.

homozygous heterozygous

