GitHub Actions

Valeh Valiollah Pour Amiri **CCB Skills Seminar** 4/13/2022

Agenda

- Overview of GitHub Actions
- Live demo
- What you can use GitHub Actions for in your research

Overview of GitHub Actions

Overview of GitHub Actions

aka GHA

To streamline DevOps pipelines and automate CI/CD build, test, and deployment steps

To streamline DevOps pipelines and automate CI/CD build, test, and deployment steps

. . .

To streamline DevOps pipelines and automate CI/CD build, test, and deployment steps

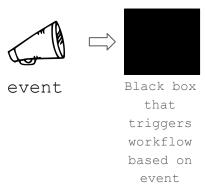
. . .

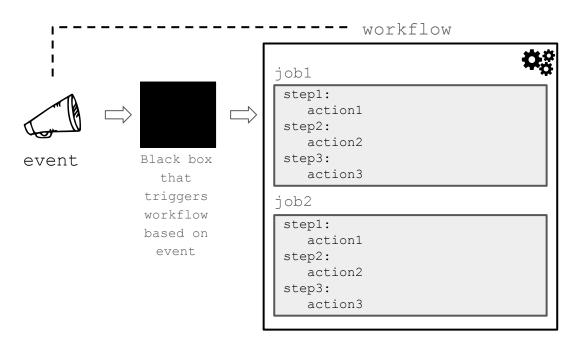
Huh?? 😦

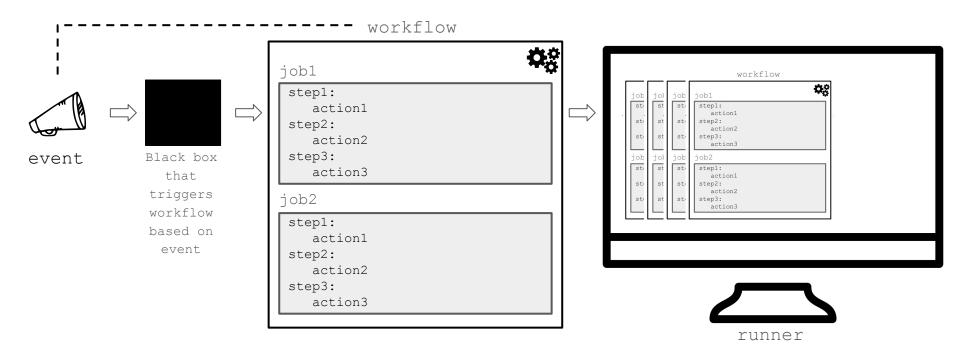
- Originally conceived to automate parts of the software development process
 - Used heavily by application/package developers
- But it goes beyond that
- You can think of it as this: something that can do things based on relevant events

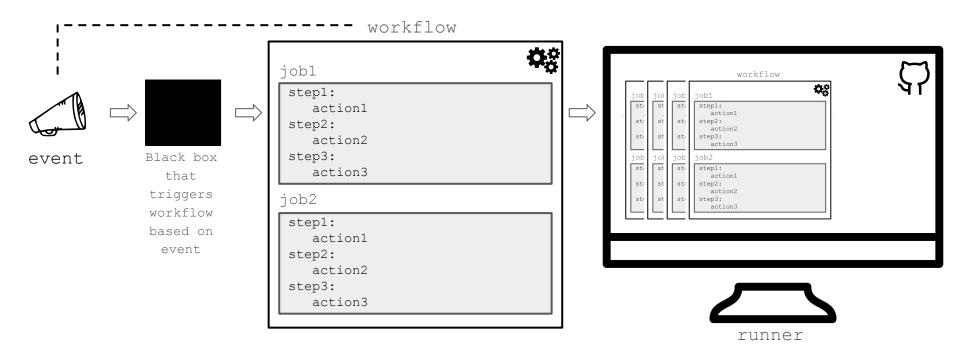
- Originally conceived to automate parts of the software development process
 - Used heavily by application/package developers
- But it goes beyond that
- You can think of it as this: something that can do things based on relevant

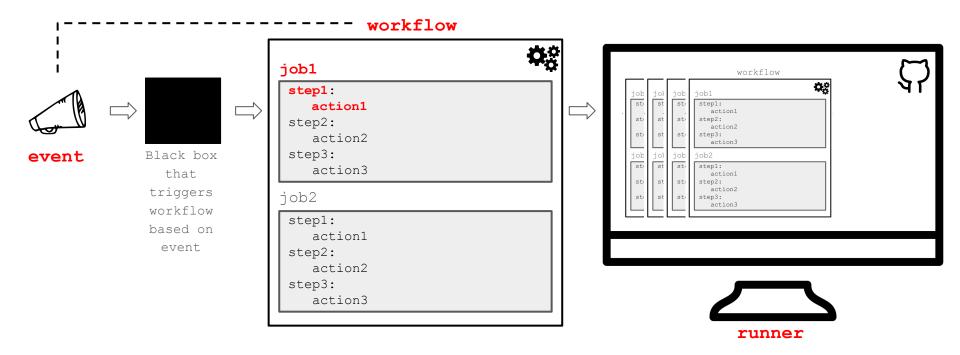
events

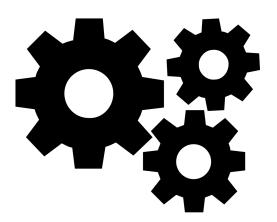

The occurrence of a relevant activity within the repo, e.g. the creation of a new issue. It can also be purely chronological, e.g. trigger every week.

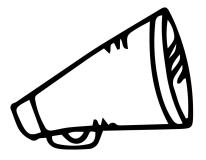

We will dive into this in the next slides where I explain *what* GHA is.

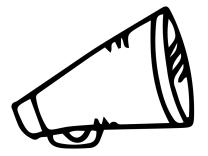

The sky is the limit here. It ranges from: adding a label to any issue someone creates in your repo, to: compiling a Jupyter Notebook and publishing it to a site server.


- It is an ecosystem of tools to help you automatically launch workflows based on signals of your choosing
- Here is a step-by-step walkthrough diagram

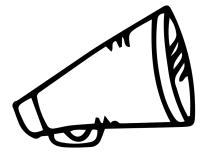


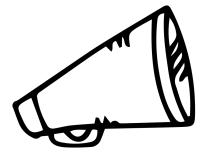


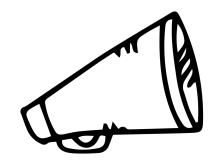

Workflows


Workflows

- The meat of GHA
- Define relevant events that trigger them
- ... and the jobs they run once triggered
- YAML file under .github/workflows
- Can have more than one workflow
 - e.g. one that tests your code everytime you push to main, another that sends "Thanks" to each person that opens an issue in your repo, etc.
- Workflows can be nested and re-used
- Concept of starter workflows
 - GitHub-provided: https://github.com/actions/starter-workflows
 - Organization-specific (act like templates)

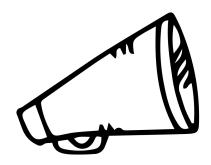



- Events
 - Trigger workflows

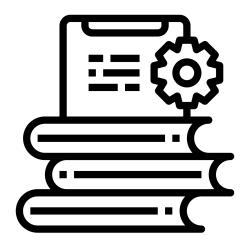

- Trigger workflows
- o Based on relevant stimuli: an activity within the repo, or a schedule

- Trigger workflows
- Based on relevant stimuli: an activity within the repo, or a schedule
- Workflows can also be triggered manually via GitHub UI

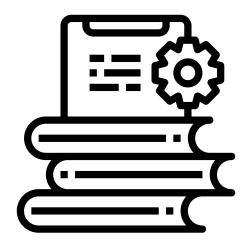
- Trigger workflows
- o Based on relevant stimuli: an activity within the repo, or a schedule
- Workflows can also be triggered manually via GitHub UI
- Lot of flexibility in defining events, using activity types, filters, etc. Examples:

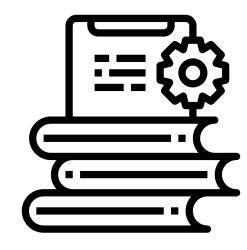

Events

- Trigger workflows
- Based on relevant stimuli: an activity within the repo, or a schedule
- Workflows can also be triggered manually via GitHub UI
- Lot of flexibility in defining events, using activity types, filters, etc. Examples:

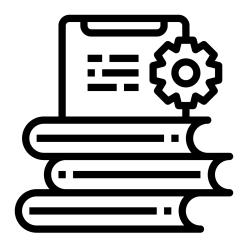

Fine tune further using event properties. Example:

```
on:
    issues:
        types:
            - labeled

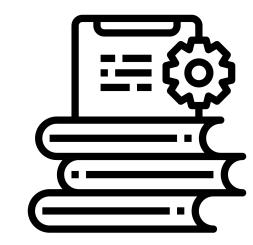

jobs:
    run_if_label_matches:
        if: github.event.label.name == 'bug'
        steps:
            - run: echo 'The label was bug'
```



Jobs and Steps


- Jobs and Steps
 - Workflow = 1 or more jobs


- Jobs and Steps
 - Workflow = 1 or more jobs
 - Job = set of steps that run on the same machine (runner)

- Jobs and Steps
 - Workflow = 1 or more jobs
 - Job = set of steps that run on the same machine (runner)
 - Step = command/script/action

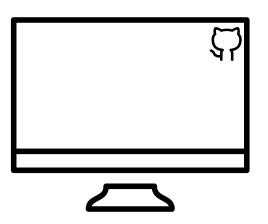


- Jobs and Steps
 - Workflow = 1 or more jobs
 - Job = set of steps that run on the same machine (runner)
 - Step = command/script/action
 - Job concurrency:
 - Default: all jobs run in parallel (possibly on different runners)
 - A job can needs another job
 - Concurrency groups => sequential jobs

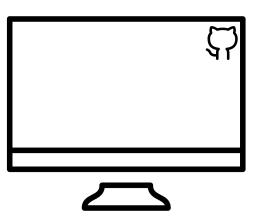
- Jobs and Steps
 - Workflow = 1 or more jobs
 - Job = set of steps that run on the same machine (runner)
 - Step = command/script/action
 - Job concurrency:
 - Default: all jobs run in parallel (possibly on different runners)
 - A job can needs another job
 - Concurrency groups => sequential jobs
 - Job matrix: different configs for the same job ->


Python\OS	ubuntu-latest	ubuntu-20.04
3.7	√	√
3.8	√	√
3.9	√	√


```
runs-on: ${{ matrix.os }}
strategy:
  matrix:
    os: [ubuntu-latest, ubuntu-20.04]
    python: [3.7, 3.8, 3.9]
steps:
    - uses: setup-python@v2
    with:
        python-version: ${{ matrix.python }}
```

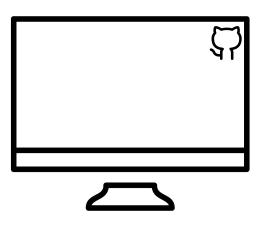

- Jobs and Steps
 - Workflow = 1 or more jobs
 - Job = set of steps that run on the same machine (runner)
 - Step = command/script/action
 - Job concurrency:
 - Default: all jobs run in parallel (possibly on different runners)
 - A job can needs another job
 - Concurrency groups => sequential jobs
 - Job matrix: different configs for the same job ->

Python\OS	ubuntu-latest	ubuntu-20.04
3.7	√	√
3.8	√	х
3.9	√	√

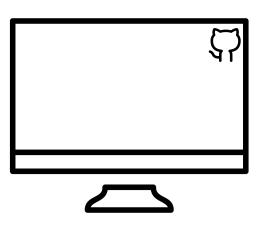



```
runs-on: ${{ matrix.os }}
strategy:
  matrix:
    os: [ubuntu-latest, ubuntu-20.04]
    python: [3.7, 3.8, 3.9]
steps:
    uses: setup-python@v2
    with:
        python-version: ${{ matrix.python }}
exclude:
    os: ubuntu-20.04
        python: 3.8
```

Runners



- Runners
 - Machine that your workflow runs-on


Runners

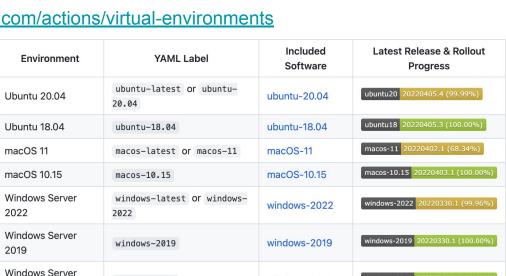
- Machine that your workflow runs-on
- 1 job per machine at a time

Runners

- Machine that your workflow runs-on
- o 1 job per machine at a time
- Fresh virtual environment for each workflow

Runners

- Machine that your workflow runs-on
- 1 job per machine at a time
- Fresh virtual environment for each workflow
- Available OS versions: https://github.com/actions/virtual-environments


Environment	YAML Label	Included Software	Latest Release & Rollout Progress
Ubuntu 20.04	ubuntu-latest or ubuntu- 20.04	ubuntu-20.04	ubuntu20 20220405.4 (99.99%)
Ubuntu 18.04	ubuntu-18.04	ubuntu-18.04	ubuntu18 20220405.3 (100.00%)
macOS 11	macos-latest or macos-11	macOS-11	macos-11 20220402.1 (68.34%)
macOS 10.15	macos-10.15	macOS-10.15	macos-10.15 20220403.1 (100.00%)
Windows Server 2022	windows-latest or windows- 2022	windows-2022	windows-2022 20220330.1 (99.96%)
Windows Server 2019	windows-2019	windows-2019	windows-2019 20220330.1 (100.00%)
Windows Server 2016	windows-2016	windows-2016	windows-2016 20220306.1 (100.00%)

Runners

- Machine that your workflow runs-on
- 1 job per machine at a time
- Fresh virtual environment for each workflow
- Available OS versions: https://github.com/actions/virtual-environments

2016

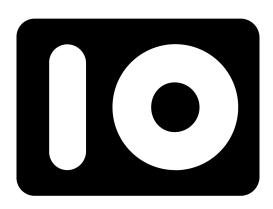
- Can self-host runners
 - Other OS
 - Custom hardware

windows-2016

windows-2016

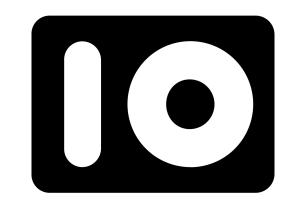

windows-2016 20220306.1 (100.00%)

Actions



Actions

- Is the code that steps within a job execute
- Typically more involved than a script (more like a mini-app). E.g.
 - Set up a Node.js environment
 - Set up authentication to a Cloud provider
 - Upload code coverage reports for your repository to codecov.io
- Community-driven Actions marketplace: https://github.com/marketplace?type=actions
- You can write your own Actions and optionally share with the community
 - GitHub provides an Actions toolkit to help you get started: https://github.com/actions/toolkit
- Piece of cake to add an existing Action to your workflow
 - Live example in a bit



Artifacts

Artifacts

- Outputs of workflow jobs
- Used to pass data between jobs in the same workflow
 - Remember steps of a job run on the same runner -> simple IO using the file system
- o ... Or upload the results of a run for future access. E.g. Logs from a test run
- Default storage: 90 days
 - Override using the retention-days property of the upload-artifact Action
- Can access artifacts via the UI we'll see it live in a bit
- o ... Or programmatically using Actions:
 - actions/download-artifact
 - actions/upload-artifact

Live demo

Live demo

https://github.com/watiss/CCB-Skills-GitHubActions

What can I use GHA for in my research?

GHA example use cases

- Typical example is CI (Continuous Integration)
 - Why CI? Keep repo as up-to-date as possible => reduce bugs and merge conflicts
 - Why automated CI? Do you really want to check out your repo and run all your tests on different platforms with different OS/Python version combinations *manually* everytime you push to your repo? ... I didn't think so
 - CI workflows do the above and more (linters, code coverage, etc.)
 - GitHub has a plethora of starter CI workflows:
 https://github.com/actions/starter-workflows/tree/main/ci
 - Let's look at an example: https://github.com/scverse/scvi-tools/actions

GHA example use cases

- Publish a Jupyter Book to a site (e.g. using GitHub Pages)
- And keep it up to date using GitHub Actions
- Example: https://github.com/vals/single-cell-studies

GHA use cases

- Automatic Rendering of a Plot with GitHub Action:
 https://amitlevinson.com/blog/automated-plot-with-github-actions/
- Keep the README up to date by having a GitHub Actions re-generate the plot it shows upon every relevant push
- Let's have a look: https://github.com/AmitLevinson/TidyTuesday

GHA use cases

- Host your up to date Latex files at a permanent URL: https://davidegerosa.com/githubforlatex/
- Idea: GHA workflow compiles your tex files and pushes the artifacts on a branch - the latter is used as the source for the site hosting your paper
- Let's have a look: https://github.com/dgerosa/writeapaper/tree/main
- ... You could even have it be emailed to you once ready! Check out this action on the marketplace: https://github.com/marketplace/actions/send-email

Resources & Acknowledgements

Resources & Acknowledgements

- Official GHA website and guides: https://docs.github.com/en/actions
- Thanks to Adam Gayoso for valuable feedback and suggestions

Thanks for listening!