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Long history of modeling infectious disease 
transmission

SIR schematic source: https://covid19.uclaml.org/model.html



Given data, what can we say about our model 
parameters?

?



Resource for Bayesian statistics



Bayesian inference

• Observed data: e.g., number of observed infections (D)

• Probability model: how is the observed data generated?
• Model is parameterized by 

• Fitting the model: we want to find θ that have high probability given 
our observed data
• We want                   to be large

• i.e., we want to find “highly plausible” θ given our data



Bayesian updating

• Bayes’ rule tells us how to compute these “plausibilities”:

•           is the prior probability

•                is the likelihood

•            is a normalizing constant

•                is the posterior probability



Globe tossing example

• Observed data D = (W, L)

• Binomial model with parameter p
•  

• Question: which p are most plausible given our 
data?

• Toss globe 9 times: observe W = 6 water and L = 3 land

• What’s the proportion p of Earth that is covered in water?



Globe tossing Bayesian updating

• Apply Bayes’ rule:

• Binomial likelihood:

• Uniform prior:  



Globe tossing Bayesian updating

Prior Likelihood Posterior



Analyzing the Bayesian estimate

• The entire posterior distribution is the Bayesian estimate!

• Extract point estimates
• Find the parameter value with highest probability (MAP estimate)
• Find the median parameter value (50% quantile)

• Extract credible intervals
• e.g., find the 2.5% and 97.5% quantiles of the parameter values

• Make posterior predictions
• Simulate new data taking into account all of the uncertainty embodied in the 

posterior distribution



Sampling from the Bayesian estimate

• Usually easier to work with samples from the posterior



What can we learn from this data?



Need to add demographic processes to 
obtain periodic case trajectories

SIR schematic source: https://sineadmorris.github.io/post/the-sir-model/



Key epidemiological parameter: R0

• Average number of secondary cases that an infectious individual 
would generate in a completely susceptible population
• R0 < 1: no outbreak

• R0 > 1: yes outbreak



Perform inference on R0

Observed data D Probability model
(assume cases Poisson distributed)

Likelihood: Prior:



Grid approximation can fail

• Globe tossing example: choose a discrete set of p values and compute 
the posterior probability for each p value

• Can we do something similar with R0 values instead?
• Problem: P(D|R0) values are extremely small

• Could be numerical issues with trying to sample R0 values from a grid 
approximated posterior

• Grid approximation computationally infeasible with high-dimensional 
parameter spaces



Markov Chain Monte Carlo (MCMC)

• Algorithm for obtaining samples from the posterior distribution 
without ever computing the actual posterior distribution



Markov chains (weather space)
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Markov chains (proportion of water p space)
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Metropolis-Hastings Algorithm

• Constructs a Markov chain that gives us parameter samples in 
proportion to their posterior probability
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Metropolis Algorithm

1. Start the chain at a parameter value θ0

2. Choose a new parameter value (θ*), based on the current 
parameter value (θ)

3. If the P(D| θ*)P(θ*) > P(D|θ)P(θ), move the chain to θ*. Otherwise, 
move the chain to θ* with probability P(D| θ*)P(θ*)/P(D|θ)P(θ)

4. Repeat steps 2-3 until the distribution of parameter values 
converges



Burn-in samples need to be removed



Grid approximation versus MCMC



Prior and posterior mean trajectories

Prior Posterior



Thanks for listening!


	Slide 1: Introduction to MCMC for Infectious Diseases
	Slide 2: Long history of modeling infectious disease transmission
	Slide 3: Given data, what can we say about our model parameters?
	Slide 4: Resource for Bayesian statistics
	Slide 5: Bayesian inference
	Slide 6: Bayesian updating
	Slide 7: Globe tossing example
	Slide 8: Globe tossing Bayesian updating
	Slide 9: Globe tossing Bayesian updating
	Slide 10: Analyzing the Bayesian estimate
	Slide 11: Sampling from the Bayesian estimate
	Slide 12: What can we learn from this data?
	Slide 13: Need to add demographic processes to obtain periodic case trajectories
	Slide 14: Key epidemiological parameter: R0
	Slide 15: Perform inference on R0
	Slide 16: Grid approximation can fail
	Slide 17: Markov Chain Monte Carlo (MCMC)
	Slide 18: Markov chains (weather space)
	Slide 19: Markov chains (proportion of water p space)
	Slide 20: Metropolis-Hastings Algorithm
	Slide 21: Metropolis Algorithm
	Slide 22: Burn-in samples need to be removed
	Slide 23: Grid approximation versus MCMC
	Slide 24: Prior and posterior mean trajectories
	Slide 25: Thanks for listening!

