Introduction to MCMC for Infectious Diseases

CCB Skills Seminar – 10/10/2024

Philip Lee

Long history of modeling infectious disease transmission

Given data, what can we say about our model parameters?

time

Resource for Bayesian statistics

Bayesian inference

- **Observed data:** e.g., number of observed infections (D)
- **Probability model:** how is the observed data generated?

- Model is parameterized by $\ \theta \in \Theta$

- Fitting the model: we want to find θ that have high probability given our observed data
 - We want $P(\boldsymbol{\theta}|\boldsymbol{D})$ to be large
 - i.e., we want to find "highly plausible" θ given our data

Bayesian updating

• Bayes' rule tells us how to compute these "plausibilities":

$$P(\boldsymbol{\theta}|D) = \frac{P(D|\boldsymbol{\theta})P(\boldsymbol{\theta})}{P(D)}$$

- $P(\boldsymbol{\theta})$ is the **prior probability**
- $P(D|\theta)$ is the **likelihood**
- ${\cal P}(D)$ is a normalizing constant
- $P(\boldsymbol{\theta}|\boldsymbol{D})\,$ is the posterior probability

Globe tossing example

- Toss globe 9 times: observe W = 6 water and L = 3 land
- What's the proportion p of Earth that is covered in water?

- Observed data D = (W, L)
- \bullet Binomial model with parameter p
 - $W \sim \operatorname{Binom}(p)$
- Question: which p are most plausible given our data?

Globe tossing Bayesian updating

• Apply Bayes' rule:

$$P(p|W) = \frac{P(W|p)P(p)}{P(W)} \qquad P(p|W) \propto P(W|p)P(p)$$

• Binomial likelihood:
$$P(W|p) = {W+L \choose W} p^W (1-p)^L$$

• Uniform prior: P(p) = 1

Globe tossing Bayesian updating

Analyzing the Bayesian estimate

- The **entire** posterior distribution is the Bayesian estimate!
- Extract **point estimates**
 - Find the parameter value with highest probability (MAP estimate)
 - Find the median parameter value (50% quantile)
- Extract credible intervals
 - e.g., find the 2.5% and 97.5% quantiles of the parameter values
- Make posterior predictions
 - Simulate new data taking into account all of the uncertainty embodied in the posterior distribution

Sampling from the Bayesian estimate

• Usually easier to work with samples from the posterior

What can we learn from this data?

time

Need to add demographic processes to obtain periodic case trajectories

$$\begin{aligned} \frac{dS}{dt} &= \mu N - \beta S I / N - \mu S \\ \frac{dI}{dt} &= \beta S I / N - \gamma I - \mu I \\ \frac{dR}{dt} &= \gamma I - \mu R \end{aligned}$$

SIR schematic source: https://sineadmorris.github.io/post/the-sir-model/

Key epidemiological parameter: R_0

- Average number of secondary cases that an infectious individual would generate in a completely susceptible population
 - $R_0 < 1$: no outbreak
 - $R_0 > 1$: yes outbreak

$$\frac{dS}{dt} = \mu N - \beta SI/N - \mu S$$

$$\frac{dI}{dt} = \beta SI/N - \gamma I - \mu I$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

Perform inference on R_0

Grid approximation can fail

- Globe tossing example: choose a discrete set of *p* values and compute the posterior probability for each *p* value
- Can we do something similar with R_0 values instead?
 - Problem: $P(D|R_0)$ values are extremely small
 - Could be numerical issues with trying to sample R_0 values from a grid approximated posterior
- Grid approximation computationally infeasible with high-dimensional parameter spaces

Markov Chain Monte Carlo (MCMC)

• Algorithm for obtaining **samples** from the posterior distribution without ever computing the actual posterior distribution

Markov chains (weather space)

4

sunny

Markov chains (proportion of water p space)

Metropolis-Hastings Algorithm

 Constructs a Markov chain that gives us parameter samples in proportion to their posterior probability

Nicholas Metropolis

Arianna Rosenbluth

Marshall Rosenbluth

Augusta Teller

Edward Teller

Wilfred Hastings

Metropolis Algorithm

- 1. Start the chain at a parameter value θ_0
- 2. Choose a new parameter value (θ^*), based on the current parameter value (θ)
- 3. If the $P(D|\theta^*)P(\theta^*) > P(D|\theta)P(\theta)$, move the chain to θ^* . Otherwise, move the chain to θ^* with probability $P(D|\theta^*)P(\theta^*)/P(D|\theta)P(\theta)$
- 4. Repeat steps 2-3 until the distribution of parameter values converges

Burn-in samples need to be removed

Grid approximation versus MCMC

0.30 R0_posterior 0.20 300 Frequency 0.10 100 0.00 վլլլլե 0 1.0 1.5 1.5 2.0 2.5 3.0 1.0 2.0 2.5 3.0

R0_grid

Histogram of MCMC_samples

R0

Prior and posterior mean trajectories

Thanks for listening!