Introduction to MCMC for Infectious Diseases

CCB Skills Seminar – 10/10/2024

Philip Lee

Long history of modeling infectious disease transmission

S

 R

150

Given data, what can we say about our model parameters?

time

Resource for Bayesian statistics

Bayesian inference

- **Observed data:** e.g., number of observed infections (*D*)
- **Probability model:** how is the observed data generated?

• Model is parameterized by $\theta \in \Theta$

- **Fitting the model:** we want to find *θ* that have high probability given our observed data
	- We want $P(\theta|D)$ to be large
	- i.e., we want to find "highly plausible" *θ* given our data

Bayesian updating

• **Bayes' rule** tells us how to compute these "plausibilities":

$$
P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}
$$

- $P(\theta)$ is the **prior probability**
- \bullet $P(D|\theta)$ is the **likelihood**
- $P(D)$ is a normalizing constant
- $P(\theta|D)$ is the **posterior probability**

Globe tossing example

- Toss globe 9 times: observe *W = 6* water and *L = 3* land
- What's the proportion *p* of Earth that is covered in water?

- Observed data *D = (W, L)*
- Binomial model with parameter *p*
	- $W \sim \text{Binom}(p)$
- **Question:** which *p* are most plausible given our data?

Globe tossing Bayesian updating

• Apply Bayes' rule:

$$
P(p|W) = \frac{P(W|p)P(p)}{P(W)} \qquad \ \ P(p|W) \propto P(W|p)P(p)
$$

• **Binomial likelihood:**
$$
P(W|p) = {W+L \choose W} p^W (1-p)^L
$$

• Uniform prior: $P(p) = 1$

Globe tossing Bayesian updating

Analyzing the Bayesian estimate

- The **entire** posterior distribution is the Bayesian estimate!
- Extract **point estimates**
	- Find the parameter value with highest probability (MAP estimate)
	- Find the median parameter value (50% quantile)
- Extract **credible intervals**
	- e.g., find the 2.5% and 97.5% quantiles of the parameter values
- Make **posterior predictions**
	- Simulate new data taking into account all of the uncertainty embodied in the posterior distribution

Sampling from the Bayesian estimate

• Usually easier to work with samples from the posterior

What can we learn from this data?

time

Need to add demographic processes to obtain periodic case trajectories

$$
\frac{dS}{dt} = \mu N - \beta SI/N - \mu S
$$

$$
\frac{dI}{dt} = \beta SI/N - \gamma I - \mu I
$$

$$
\frac{dR}{dt} = \gamma I - \mu R
$$

SIR schematic source: https://sineadmorris.github.io/post/the-sir-model/

Key epidemiological parameter: R_0

- Average number of secondary cases that an infectious individual would generate in a completely susceptible population
	- R_0 < 1: no outbreak
	- $R_0 > 1$: yes outbreak

$$
\begin{aligned}\n\frac{dS}{dt} &= \mu N - \beta SI/N - \mu S \\
\frac{dI}{dt} &= \beta SI/N - \gamma I - \mu I\n\end{aligned}\n\qquad R_0 = \frac{\beta}{\gamma + \mu}
$$
\n
$$
\frac{dR}{dt} = \gamma I - \mu R
$$

Perform inference on R_0

Grid approximation can fail

- Globe tossing example: choose a discrete set of *p* values and compute the posterior probability for each *p* value
- \bullet Can we do something similar with R_0 values instead?
	- Problem: $P(D|R_0)$ values are extremely small
	- \bullet Could be numerical issues with trying to sample $R^{}_0$ values from a grid approximated posterior
- Grid approximation computationally infeasible with high-dimensional parameter spaces

Markov Chain Monte Carlo (MCMC)

• Algorithm for obtaining **samples** from the posterior distribution without ever computing the actual posterior distribution

Markov chains (weather space)

Markov chains (proportion of water *p* space)

Metropolis-Hastings Algorithm

• Constructs a Markov chain that gives us parameter samples in proportion to their posterior probability

Nicholas Metropolis

Arianna Rosenbluth

Rosenbluth

Marshall Augusta

Teller

Edward Teller

Wilfred Hastings

Metropolis Algorithm

- 1. Start the chain at a parameter value θ_0
- 2. Choose a new parameter value (θ^*) , based on the current parameter value (*θ*)
- 3. If the $P(D | \theta^*) P(\theta^*) > P(D | \theta) P(\theta)$, move the chain to θ^* . Otherwise, move the chain to θ^* with probability $P(D|\theta^*)P(\theta^*)/P(D|\theta)P(\theta)$
- 4. Repeat steps 2-3 until the distribution of parameter values converges

Burn-in samples need to be removed

Grid approximation versus MCMC

 0.30 R₀_posterior 0.20 300 Frequency 0.10 100 0.00 \circ 1.5 1.0 2.0 2.5 $3.0\,$ 1.0 1.5 2.0 2.5 3.0 R0_grid R₀

Histogram of MCMC_samples

Prior and posterior mean trajectories

Thanks for listening!