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Link for following along

Colab notebook: https://tinyurl.com/ccb-intro-to-jax



https://tinyurl.com/ccb-intro-to-jax

Plan for today
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What is Jax?

* Open-source machine learning library in Python developed by Google

e A scalable and flexible set of numerical transformations and compositions
on arrays

 Composable gradient computations
» Efficient linear algebra in multiple backends (CPU, GPU, TPU)
* Flexible code compilation

* |nterface inspired by NumPy

 Emphasis on functional programming
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JAX

JIT

compilation Autograd

Compiles user-written code Computes gradients through Provide efficient kernels and
using various optimizations Jax and native Python code automatic vectorization

from jax import jit from jax import grad from jax import vmap
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Extended example for today

Exploratory analysis of single-cell RNA-seq data
Subset of the human lung cell atlas (3000 cells x 2000 genes)

Single-cell RNA-seq data ———p PCA representation K-means clustering

Count matrix (cells by Coordinate matrix (cells Cluster assignments
genes) by # of components) for each cell
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JIT compilation

Just-in-time compilation: Jax can compile code during the execution of a
Python program and cache functions

jit my func = jax.jit(my func)
Applies optimizations such as:
* Operation fusions

 Removing redundant memory allocations

How it works: Jax drops an abstract array into the function and traces how it
IS affected in order to optimize the function




JIT compilation: demo

Logistic regression cost function
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JIT compilation

Works best when the function is:
 Complex with many sequential array operations
 More opportunities for optimizations
» Called multiple times on inputs with the same shape and datatype

e Spreads out the initial overhead cost

e e.g. forward pass or a gradient update to the parameters in an neural net
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Example: PCA

Goal: Compute the PCA representation of our data for visualization and
efficient clustering

Find the n directions that capture the most variance in our data.
1. U,X, V' « sSvD(X)

2. principal coordinates «— ¢ ® U, diag(c) = 2

3. take first n principal coordinates




JIT compilation: demo

Principal components analysis
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XLA & vectorization

Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
code to device-specific kernels (CPU, GPU, TPU)

jax.vmap allows us to take advantage of XLA without writing complicated
batched code by automatically vectorizing array operations

my func # complex function only implemented for vectors

X

np.random.randn(1000, 1000)

vmap my func = jax.vmap(my func, in axes=0)

result = vmap my func(X)




XLA & vectorization: demo

Pairwise Euclidean distances
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Example: k-means clustering

Goal: Cluster our data using k-means for visualization and labeling

Given data X € R and fixed number of clusters k:

k
Find y; that minimize Z 2 IX; — w13

Expectation step: y; < arg min HXJ- — ﬂiH%

1

Maximization step: j; < —— X




XLA & vectorization: demo

K-means clustering with Lloyd’s method
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Autograd

Jax provides automatic differentiation as part of its core functionality:
grad my func = jax.grad(my_ func)

derivative = grad my func(l.5)

It Is composable with all other core functions we’ve seen:

composed = jax.grad(jax.vmap(jax.jit(my func)))

Similar to JIT compilation, Jax traces the operations that affect a particular
value and then applies derivative rules.




Autograd: demo

Plotting simple functions and their derivatives
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Example: Newton’s method

Goal: Use Newton’s method to optimizer our loss function

Newton’s method uses second-order partial derivatives (Hessian matrices) to
characterize the curvature of the loss function.

k
L= > lIx—ul’

Expectation step: y; «— arg min ||X; — //tl-H%

4 0L
ou,;

Maximization step: y; < y, — [




Example: Newton’s method




Autograd: demo

K-means clustering with Newton’s method
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JAX

JIT

compilation Autograd

Binary cross-entropy loss for Derivatives of polynomials Pairwise Euclidean distances
logistic regression and piecewise functions between vectors

Principal component analysis Newton’s method K-means clustering




Other topics not covered here
e jax.scipy: SciPy API

 jax.pmap: parallel execution on multiple devices
 jax.lax: lower-level functions for more custom operations
 PyTrees: an essential data structure in Jax

 Random number generation

 Ahead-of-time compilation

e Forward- and reverse-mode autodiff




Why use Jax? Its ecosystem

* Flax: Neural network library
» Optax: Gradient processing and optimizers
« Jraph: Graph neural networks

 NumPyro: Probabillistic programming

 HuggingFace: Pretrained models
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Thanks for listening! Questions?

Colab notebook: https://tinyurl.com/ccb-intro-to-jax

Email: martinkim (at) berkeley.edu




