Introduction to Jax from the lens of computational biology

CCB Skills Seminar Martin Kim (Yosef Lab, UC Berkeley)

11 May 2023

CCB CENTER FUR COMPUTATIONAL BIOLOGY

Link for following along

Colab notebook: <u>https://tinyurl.com/ccb-intro-to-jax</u>

Plan for today

What is Jax? Overview of its main features

Exploring its main features with an extended example

Why use Jax? Its ecosystem and some projects

Open-source machine learning library in Python developed by Google

- Open-source machine learning library in Python developed by Google
- A scalable and flexible set of numerical transformations and compositions on arrays

- Open-source machine learning library in Python developed by Google
- on arrays
 - Composable gradient computations

A scalable and flexible set of numerical transformations and compositions

- Open-source machine learning library in Python developed by Google
- A scalable and flexible set of numerical transformations and compositions on arrays
 - Composable gradient computations
 - Efficient linear algebra in multiple backends (CPU, GPU, TPU)

- Open-source machine learning library in Python developed by Google
- A scalable and flexible set of numerical transformations and compositions on arrays
 - Composable gradient computations
 - Efficient linear algebra in multiple backends (CPU, GPU, TPU)
 - Flexible code compilation

- Open-source machine learning library in Python developed by Google
- A scalable and flexible set of numerical transformations and compositions on arrays
 - Composable gradient computations
 - Efficient linear algebra in multiple backends (CPU, GPU, TPU)
 - Flexible code compilation
- Interface inspired by NumPy

- Open-source machine learning library in Python developed by Google
- A scalable and flexible set of numerical transformations and compositions on arrays
 - Composable gradient computations
 - Efficient linear algebra in multiple backends (CPU, GPU, TPU)
 - Flexible code compilation
- Interface inspired by NumPy
- Emphasis on functional programming

import numpy as np
import jax.numpy as jnp

import numpy as np
import jax.numpy as jnp

- z = np.dot(X, y)
- z = jnp.dot(X, y)

import numpy as np import jax.numpy as jnp

- z = np.dot(X, y)
- z = jnp.dot(X, y)

dist = np.linalg.norm(z - y) dist = jnp.linalg.norm(z - y)

import numpy as np import jax.numpy as jnp

- z = np.dot(X, y)
- z = jnp.dot(X, y)
- dist = np.linalg.norm(z y)dist = jnp.linalg.norm(z - y)
- a = np.reshape(X, (-1,))a = jnp.reshape(X, (-1,))

import numpy as np
import jax.numpy as jnp

- z = np.dot(X, y)
- z = jnp.dot(X, y)
- dist = np.linalg.norm(z y)
 dist = jnp.linalg.norm(z y)
- a = np.reshape(X, (-1,))
 a = jnp.reshape(X, (-1,))

numpy.ndarray

jax.numpy.ndarray

JAX

Compiles user-written code using various optimizations

from jax import **jit**

JAX

Compiles user-written code using various optimizations

Computes gradients through Jax and native Python code

from jax import **jit**

from jax import grad

Compiles user-written code using various optimizations

Computes gradients through Jax and native Python code

from jax import **jit**

from jax import grad

Provide efficient kernels and automatic vectorization

from jax import **vmap**

Exploratory analysis of single-cell RNA-seq data Subset of the human lung cell atlas (3000 cells x 2000 genes)

Exploratory analysis of single-cell RNA-seq data Subset of the human lung cell atlas (3000 cells x 2000 genes)

Single-cell RNA-seq data

Count matrix (cells by genes)

Exploratory analysis of single-cell RNA-seq data Subset of the human lung cell atlas (3000 cells x 2000 genes)

Single-cell RNA-seq data

Count matrix (cells by genes)

PCA representation Coordinate matrix (cells by # of components)

Exploratory analysis of single-cell RNA-seq data Subset of the human lung cell atlas (3000 cells x 2000 genes)

Single-cell RNA-seq data

Count matrix (cells by genes)

PCA representation Coordinate matrix (cells by # of components)

K-means clustering

Cluster assignments for each cell

Just-in-time compilation: Jax can complete Python program and cache functions

Python program and cache functions

jit_my_func = jax.jit(my_func)

Python program and cache functions

jit_my_func = jax.jit(my_func)

Applies optimizations such as:

Python program and cache functions

jit_my_func = jax.jit(my_func)

Applies optimizations such as:

Operation fusions

Python program and cache functions

jit my func = jax.jit(my func)

Applies optimizations such as:

- Operation fusions
- Removing redundant memory allocations

Python program and cache functions

jit_my_func = jax.jit(my func)

Applies optimizations such as:

- Operation fusions
- Removing redundant memory allocations

How it works: Jax drops an abstract array into the function and traces how it is affected in order to optimize the function

JIT compilation: demo

Logistic regression cost function

- Complex with many sequential array operations
 - More opportunities for optimizations

- Complex with many sequential array operations
 - More opportunities for optimizations
- Called multiple times on inputs with the same shape and datatype
 - Spreads out the initial overhead cost

- Complex with many sequential array operations
 - More opportunities for optimizations
- Called multiple times on inputs with the same shape and datatype
 - Spreads out the initial overhead cost
- e.g. forward pass or a gradient update to the parameters in an neural net

Example: PCA

Goal: Compute the PCA representation of our data for visualization and efficient clustering

Example: PCA

Goal: Compute the PCA representation of our data for visualization and efficient clustering

Find the *n* directions that capture the most variance in our data.
Example: PCA

Goal: Compute the PCA representation of our data for visualization and efficient clustering

Find the *n* directions that capture the most variance in our data.

1. $U, \Sigma, V^{\top} \leftarrow SVD(X)$

Example: PCA

Goal: Compute the PCA representation of our data for visualization and efficient clustering

Find the *n* directions that capture the most variance in our data.

1.
$$U, \Sigma, V^{\top} \leftarrow SVD(X)$$

2. principal coordinates $\leftarrow \sigma \odot U$, diag $(\sigma) = \Sigma$

Example: PCA

Goal: Compute the PCA representation of our data for visualization and efficient clustering

Find the *n* directions that capture the most variance in our data.

1.
$$U, \Sigma, V^{\top} \leftarrow SVD(X)$$

- 2. principal coordinates $\leftarrow \sigma \odot U$, diag $(\sigma) = \Sigma$
- 3. take first *n* principal coordinates

JIT compilation: demo

Principal components analysis

code to device-specific kernels (CPU, GPU, TPU)

Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python

code to device-specific kernels (CPU, GPU, TPU)

batched code by automatically vectorizing array operations

- Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
- **jax.vmap** allows us to take advantage of XLA without writing complicated

code to device-specific kernels (CPU, GPU, TPU)

batched code by automatically vectorizing array operations

my func

- Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
- **jax.vmap** allows us to take advantage of XLA without writing complicated
 - # complex function only implemented for vectors

code to device-specific kernels (CPU, GPU, TPU)

batched code by automatically vectorizing array operations

- my func # complex function only implemented for vectors X = np.random.randn(1000, 1000)

- Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
- **jax.vmap** allows us to take advantage of XLA without writing complicated

code to device-specific kernels (CPU, GPU, TPU)

batched code by automatically vectorizing array operations

- my func # complex function only implemented for vectors
- X = np.random.randn(1000, 1000)
- vmap_my_func = jax.vmap(my_func, in_axes=0)

- Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
- **jax.vmap** allows us to take advantage of XLA without writing complicated

code to device-specific kernels (CPU, GPU, TPU)

batched code by automatically vectorizing array operations

X = np.random.randn(1000, 1000)

vmap_my_func = jax.vmap(my_func, in_axes=0)

result = vmap_my_func(X)

- Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
- **jax.vmap** allows us to take advantage of XLA without writing complicated
- my func # complex function only implemented for vectors

XLA & vectorization: demo

Pairwise Euclidean distances

Example: k-means clustering

Goal: Cluster our data using k-means for visualization and labeling

Example: k-means clustering Goal: Cluster our data using k-means for visualization and labeling Given data $X \in \mathbb{R}^{N \times D}$ and fixed number of clusters k: Find μ_i that minimize $\sum_{i=1}^{k} \sum_{j=1}^{k} ||\mathbf{x}_j - \mu_i||_2^2$ $i=1 \mathbf{x}_i \in S_i$

Example: k-means clustering Goal: Cluster our data using k-means for visualization and labeling Given data $X \in \mathbb{R}^{N \times D}$ and fixed number of clusters k: Find μ_i that minimize $\sum_{i=1}^{k} \sum_{j=1}^{k} ||\mathbf{x}_j - \mu_i||_2^2$ i=1 $\mathbf{x}_i \in S_i$

Expectation step: $y_i \leftarrow \arg \min \| \mathbf{x} \|$

$$\mathbf{x}_j - \mu_i \|_2^2$$

Example: k-means clustering Goal: Cluster our data using k-means for visualization and labeling Given data $X \in \mathbb{R}^{N \times D}$ and fixed number of clusters k: Find μ_i that minimize $\sum_{i=1}^{k} \sum_{j=1}^{k} \|\mathbf{x}_j - \mu_i\|_2^2$ $i=1 \mathbf{x}_i \in S_i$ 2 **Expectation step:** $y_i \leftarrow \arg \min \| \mathbf{x} \|$ Maximization step: $\mu_i \leftarrow \frac{1}{|S_i|} \sum_{i \in S_i} \sum_{$ $\mathbf{X}_i \in S_i$

$$\mathbf{x}_j - \boldsymbol{\mu}_i \|_2^2$$

 \mathbf{x}_j

XLA & vectorization: demo

K-means clustering with Lloyd's method

Autograd

Jax provides automatic differentiation as part of its core functionality:

grad_my_func = jax.grad(my_func)

derivative = grad_my_func(1.5)

Autograd

Jax provides automatic differentiation as part of its core functionality:

grad my func = jax.grad(my func)

derivative = grad my func(1.5)

It is composable with all other core functions we've seen:

composed = jax.grad(jax.vmap(jax.jit(my_func)))

Autograd

Jax provides automatic differentiation as part of its core functionality:

grad my func = jax.grad(my func)

derivative = grad my func(1).

It is composable with all other core functions we've seen:

composed = jax.grad(jax.vmap(jax.jit(my func)))

value and then applies derivative rules.

- Similar to JIT compilation, Jax **traces** the operations that affect a particular

Autograd: demo

Plotting simple functions and their derivatives

Goal: Use Newton's method to optimizer our loss function

Goal: Use Newton's method to optimizer our loss function

Newton's method uses second-order partial derivatives (Hessian matrices) to characterize the curvature of the loss function.

Goal: Use Newton's method to optimizer our loss function

Newton's method uses second-order partial derivatives (Hessian matrices) to characterize the curvature of the loss function.

$$\mathscr{L} = \sum_{i=1}^{k} \sum_{\mathbf{x}_j \in S_i} \|\mathbf{x}_j - \boldsymbol{\mu}_i\|_2^2$$

Expectation step: $y_i \leftarrow \arg \min \|\mathbf{x}_i - \mu_i\|_2^2$

Goal: Use Newton's method to optimizer our loss function

Newton's method uses second-order partial derivatives (Hessian matrices) to characterize the curvature of the loss function.

$$\mathscr{L} = \sum_{i=1}^{k} \sum_{\mathbf{x}_j \in S_i} \|\mathbf{x}_j - \boldsymbol{\mu}_i\|_2^2$$

Expectation step: $y_i \leftarrow \arg \min \|\mathbf{x}_i - \mu_i\|_2^2$

Maximization step: $\mu_i \leftarrow \mu_i - \mathbb{H}^{-1} \frac{\partial \mathscr{L}}{\partial \Omega}$

 $\begin{aligned} & -\mu_i \|_2^2 \\ & \partial \mathscr{L} \\ & \partial \mu_i \end{aligned}$

Autograd: demo

K-means clustering with Newton's method

Binary cross-entropy loss for logistic regression

Principal component analysis

JAX

Binary cross-entropy loss for logistic regression

Principal component analysis

Pairwise Euclidean distances between vectors

K-means clustering

Binary cross-entropy loss for logistic regression

Principal component analysis

Derivatives of polynomials and piecewise functions

Newton's method

Pairwise Euclidean distances between vectors

K-means clustering

Other topics not covered here

- jax.scipy: SciPy API
- jax.pmap: parallel execution on multiple devices
- jax.lax: lower-level functions for more custom operations
- **PyTrees:** an essential data structure in Jax
- Random number generation
- Ahead-of-time compilation
- Forward- and reverse-mode autodiff

Why use Jax? Its ecosystem

- Flax: Neural network library
- **Optax:** Gradient processing and optimizers
- Jraph: Graph neural networks
- NumPyro: Probabilistic programming
- HuggingFace: Pretrained models

JAX, M.D.

A Framework for Differentiable Physics

Samuel S. Schoenholz Google Research: Brain Team schsam@google.com Ekin D. Cubuk Google Research: Brain Team cubuk@google.com

Molecular dynamics

JAX, M.D.

A Framework for Differentiable Physics

Samuel S. Schoenholz Google Research: Brain Team schsam@google.com Ekin D. Cubuk Google Research: Brain Team cubuk@google.com

Molecular dynamics

Structure prediction

JAX, M.D.

A Framework for Differentiable Physics

Samuel S. Schoenholz Google Research: Brain Team schsam@google.com Ekin D. Cubuk Google Research: Brain Team cubuk@google.com

Molecular dynamics

Structure prediction

JOURNAL ARTICLE

End-to-end learning of multiple sequence alignments with differentiable Smith–Waterman a

Samantha Petti, Nicholas Bhattacharya, Roshan Rao, Justas Dauparas, Neil Thomas, Juannan Zhou, Alexander M Rush, Peter Koo, Sergey Ovchinnikov 💌

Bioinformatics, Volume 39, Issue 1, January 2023, btac724, https://doi.org/10.1093 /bioinformatics/btac724 Published: 10 November 2022 Article history ▼ Differentiable multiple sequence alignment

JAX, M.D.

A Framework for Differentiable Physics

Samuel S. Schoenholz Google Research: Brain Team schsam@google.com

Ekin D. Cubuk Google Research: Brain Team cubuk@google.com

Molecular dynamics

Structure prediction

Samantha Petti, Nicholas Bhattacharya, Roshan Rao, Justas Dauparas, Neil Thomas, Juannan Zhou, Alexander M Rush, Peter Koo, Sergey Ovchinnikov 🖾 *Bioinformatics*, Volume 39, Issue 1, January 2023, btac724, https://doi.org/10.1093 /bioinformatics/btac724 Published: 10 November 2022 Article history •

JOURNAL ARTICLE

End-to-end learning of multiple sequence alignments with differentiable Smith–Waterman 👌

Differentiable multiple sequence alignment

scib-metrics

build passing docs passing

Biological metrics and benchmarks

Accelerated and Python-only metrics for benchmarking single-cell integration outputs.

This package contains implementations of metrics for evaluating the performance of single-cell omics data integration methods. The implementations of these metrics use jax when possible for jitcompilation and hardware acceleration. All implementations are in Python.
Why use Jax?

JAX, M.D.

A Framework for Differentiable Physics

Samuel S. Schoenholz Google Research: Brain Team schsam@google.com

Ekin D. Cubuk Google Research: Brain Team cubuk@google.com

Molecular dynamics

Structure prediction

JOURNAL ARTICLE

End-to-end learning of multiple sequence alignments with differentiable Smith–Waterman 👌

Samantha Petti, Nicholas Bhattacharya, Roshan Rao, Justas Dauparas, Neil Thomas, Juannan Zhou, Alexander M Rush, Peter Koo, Sergey Ovchinnikov 🐱

Bioinformatics, Volume 39, Issue 1, January 2023, btac724, https://doi.org/10.1093 /bioinformatics/btac724 Published: 10 November 2022 Article history •

Differentiable multiple sequence alignment

scib-metrics

Biological metrics and benchmarks

build passing docs passing

Accelerated and Python-only metrics for benchmarking single-cell integration outputs.

This package contains implementations of metrics for evaluating the performance of single-cell omics data integration methods. The implementations of these metrics use jax when possible for jitcompilation and hardware acceleration. All implementations are in Python.

new Full-text search 11 Sort: Most Downloads
<pre> jonatasgrosman/wav2vec2-large-xlsr-53-english</pre>
xlm-roberta-base □ • Updated Apr 7 • ± 23M • ♡ 280
<pre> openai/clip-vit-large-patch14 Updated Oct 4, 2022 • ± 13.9M • ♡ 381 </pre>
distilbert-base-uncased ☺ • Updated Nov 16, 2022 • ± 9.8M • ♡ 194

Large language models

Thanks for listening! Questions?

Colab notebook: https://tinyurl.com/ccb-intro-to-jax

Email: martinkim (at) berkeley.edu