Introduction to Jax ‘ .\
from the lens of Y A ‘0

computational biology -
CCB Skills Seminar

Martin Kim (Yosef Lab, UC Berkeley)

4

11 May 2023 COMPUTATIONAL BIOLOGY

Link for following along

Colab notebook: https://tinyurl.com/ccb-intro-to-jax

https://tinyurl.com/ccb-intro-to-jax

Plan for today

What is Jax?

* Open-source machine learning library in Python developed by Google

What is Jax?

* Open-source machine learning library in Python developed by Google

e A scalable and flexible set of numerical transformations and compositions
on arrays

What is Jax?

* Open-source machine learning library in Python developed by Google

e A scalable and flexible set of numerical transformations and compositions
on arrays

 Composable gradient computations

What is Jax?

* Open-source machine learning library in Python developed by Google

e A scalable and flexible set of numerical transformations and compositions
on arrays

 Composable gradient computations

» Efficient linear algebra in multiple backends (CPU, GPU, TPU)

What is Jax?

* Open-source machine learning library in Python developed by Google

e A scalable and flexible set of numerical transformations and compositions
on arrays

 Composable gradient computations

» Efficient linear algebra in multiple backends (CPU, GPU, TPU)

* Flexible code compilation

What is Jax?

* Open-source machine learning library in Python developed by Google

e A scalable and flexible set of numerical transformations and compositions
on arrays

 Composable gradient computations
» Efficient linear algebra in multiple backends (CPU, GPU, TPU)

* Flexible code compilation

* |nterface inspired by NumPy

What is Jax?

* Open-source machine learning library in Python developed by Google

e A scalable and flexible set of numerical transformations and compositions
on arrays

 Composable gradient computations
» Efficient linear algebra in multiple backends (CPU, GPU, TPU)
* Flexible code compilation

* |nterface inspired by NumPy

 Emphasis on functional programming

Familiar API

import numpy as np

import jax.numpy as jnp

Familiar API

import numpy as np
import jax.numpy as Jnp

np.dot (X, y)
jnp.dot (X, y)

Familiar API

1mport numpy as np
import Jax.numpy as Jjnp

Z = np.dot (X, V)
z = Jnp.dot (X, V)

dist
dist

np.linalg.norm(z - y)

jnp.linalg.norm(z - y)

Familiar API

1mport numpy as np
lmport jax.numpy as jnp

z = np.dot (X, V)
jnp.dot (X, V)

N
]

dist
dist

np.linalg.norm(z - V)

Jnp.linalg.norm(z - V)

a = np.reshape(X, (-1,))
a = jnp.reshape (X, (-1,))

Familiar API

1mport numpy as np
import jax.numpy as jnp

Z = np.dot (X, V)
jnp.dot (X, V)

N
]

dist = np.linalg.norm(z - V)
dist = jnp.linalg.norm(z - V)

a = np.reshape(X, (-1,))

a = jnp.reshape (X, (-1,))

JAX

JAX

JIT
compilation

Compiles user-written code
using various optimizations

from jax import jit

JAX

JIT

compilation Autograd

Compiles user-written code Computes gradients through
using various optimizations Jax and native Python code

from jax import jit from jax import grad

JAX

JIT

compilation Autograd

Compiles user-written code Computes gradients through Provide efficient kernels and
using various optimizations Jax and native Python code automatic vectorization

from jax import jit from jax import grad from jax import vmap

Extended example for today

Exploratory analysis of single-cell RNA-seq data
Subset of the human lung cell atlas (3000 cells x 2000 genes)

Extended example for today

Exploratory analysis of single-cell RNA-seq data
Subset of the human lung cell atlas (3000 cells x 2000 genes)

Single-cell RNA-seq data

Count matrix (cells by
genes)

Extended example for today

Exploratory analysis of single-cell RNA-seq data
Subset of the human lung cell atlas (3000 cells x 2000 genes)

p J | /(¥+

I‘) \ / Q \ / \ Ill .“‘

= (@) \ B

o~ - f \ | / \ /

o N~ [\ 7\ /
{ |) /A | J . e
[[o VA) e N Vi ™
|I "l T — N . |(,/'. ., “'*— B ". ..ll 1‘(\-l
" I o~ //‘] {
R | .
| .'| & l'
Y\
II yl

Single-cell RNA-seqgdata ———p PCA representation

Count matrix (cells by Coordinate matrix (cells
genes) by # of components)

Extended example for today

Exploratory analysis of single-cell RNA-seq data
Subset of the human lung cell atlas (3000 cells x 2000 genes)

Single-cell RNA-seq data ———p PCA representation K-means clustering

Count matrix (cells by Coordinate matrix (cells Cluster assignments
genes) by # of components) for each cell

JIT compilation

Just-in-time compilation: Jax can compile code during the execution of a
Python program and cache functions

JIT compilation

Just-in-time compilation: Jax can compile code during the execution of a
Python program and cache functions

jit my func = jax.jit(my func)

JIT compilation

Just-in-time compilation: Jax can compile code during the execution of a
Python program and cache functions

jit my func = jax.jit(my func)

Applies optimizations such as:

JIT compilation

Just-in-time compilation: Jax can compile code during the execution of a
Python program and cache functions

jit my func = jax.jit(my func)

Applies optimizations such as:

* Operation fusions

JIT compilation

Just-in-time compilation: Jax can compile code during the execution of a
Python program and cache functions

jit my func = jax.jit(my func)
Applies optimizations such as:

* Operation fusions

 Removing redundant memory allocations

JIT compilation

Just-in-time compilation: Jax can compile code during the execution of a
Python program and cache functions

jit my func = jax.jit(my func)
Applies optimizations such as:
* Operation fusions

 Removing redundant memory allocations

How it works: Jax drops an abstract array into the function and traces how it
IS affected in order to optimize the function

JIT compilation: demo

Logistic regression cost function

JIT compilation

Works best when the function is:

JIT compilation

Works best when the function is:

« Complex with many sequential array operations

 More opportunities for optimizations

JIT compilation

Works best when the function is:
 Complex with many sequential array operations
 More opportunities for optimizations

o Called multiple times on inputs with the same shape and datatype

e Spreads out the initial overhead cost

JIT compilation

Works best when the function is:
 Complex with many sequential array operations
 More opportunities for optimizations
» Called multiple times on inputs with the same shape and datatype

e Spreads out the initial overhead cost

e e.g. forward pass or a gradient update to the parameters in an neural net

Example: PCA

Goal: Compute the PCA representation of our data for visualization and
efficient clustering

Example: PCA

Goal: Compute the PCA representation of our data for visualization and
efficient clustering

Find the n directions that capture the most variance in our data.

Example: PCA

Goal: Compute the PCA representation of our data for visualization and
efficient clustering

Find the n directions that capture the most variance in our data.

1. U,X, V' « sSvD(X)

Example: PCA

Goal: Compute the PCA representation of our data for visualization and
efficient clustering

Find the n directions that capture the most variance in our data.

1. U,X, V' « sSvD(X)

2. principal coordinates «— ¢ ® U, diag(c) = 2

Example: PCA

Goal: Compute the PCA representation of our data for visualization and
efficient clustering

Find the n directions that capture the most variance in our data.
1. U,X, V' « sSvD(X)

2. principal coordinates «— ¢ ® U, diag(c) = 2

3. take first n principal coordinates

JIT compilation: demo

Principal components analysis

XLA & vectorization

Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
code to device-specific kernels (CPU, GPU, TPU)

XLA & vectorization

Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
code to device-specific kernels (CPU, GPU, TPU)

jax.vmap allows us to take advantage of XLA without writing complicated
batched code by automatically vectorizing array operations

XLA & vectorization

Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
code to device-specific kernels (CPU, GPU, TPU)

jax.vmap allows us to take advantage of XLA without writing complicated
batched code by automatically vectorizing array operations

my func # complex function only implemented for vectors

XLA & vectorization

Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
code to device-specific kernels (CPU, GPU, TPU)

jax.vmap allows us to take advantage of XLA without writing complicated
batched code by automatically vectorizing array operations

my func # complex function only implemented for vectors

X

np.random.randn(1000, 1000)

XLA & vectorization

Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
code to device-specific kernels (CPU, GPU, TPU)

jax.vmap allows us to take advantage of XLA without writing complicated
batched code by automatically vectorizing array operations

my func # complex function only implemented for vectors

X

np.random.randn(1000, 1000)

vmap my func = jax.vmap(my func, in axes=0)

XLA & vectorization

Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
code to device-specific kernels (CPU, GPU, TPU)

jax.vmap allows us to take advantage of XLA without writing complicated
batched code by automatically vectorizing array operations

my func # complex function only implemented for vectors

X

np.random.randn(1000, 1000)

vmap my func = jax.vmap(my func, in axes=0)

result = vmap my func(X)

XLA & vectorization: demo

Pairwise Euclidean distances

Example: k-means clustering

Goal: Cluster our data using k-means for visualization and labeling

Example: k-means clustering

Goal: Cluster our data using k-means for visualization and labeling

Given data X € R and fixed number of clusters k:

k
Find y; that minimize 2 2 IX; — w13

Example: k-means clustering

Goal: Cluster our data using k-means for visualization and labeling

Given data X € R and fixed number of clusters k:

k
Find y; that minimize 2 2 IX; — w13

Expectation step: y; < arg min HXJ- — ﬂiH%

Example: k-means clustering

Goal: Cluster our data using k-means for visualization and labeling

Given data X € R and fixed number of clusters k:

k
Find y; that minimize Z 2 IX; — w13

Expectation step: y; < arg min HXJ- — ﬂiH%

1

Maximization step: j; < —— X

XLA & vectorization: demo

K-means clustering with Lloyd’s method

Autograd

Jax provides automatic differentiation as part of its core functionality:

grad my func = jax.grad(my func)

derivative = grad my func(l.5)

Autograd

Jax provides automatic differentiation as part of its core functionality:
grad my func = jax.grad(my_func)
derivative = grad my func(l.5)

It iIs composable with all other core functions we’ve seen:

composed = jax.grad(jax.vmap(jax.jit(my func)))

Autograd

Jax provides automatic differentiation as part of its core functionality:
grad my func = jax.grad(my_ func)

derivative = grad my func(l.5)

It Is composable with all other core functions we’ve seen:

composed = jax.grad(jax.vmap(jax.jit(my func)))

Similar to JIT compilation, Jax traces the operations that affect a particular
value and then applies derivative rules.

Autograd: demo

Plotting simple functions and their derivatives

Example: Newton’s method

Goal: Use Newton’s method to optimizer our loss function

Example: Newton’s method

Goal: Use Newton’s method to optimizer our loss function

Newton’s method uses second-order partial derivatives (Hessian matrices) to
characterize the curvature of the loss function.

Example: Newton’s method

Goal: Use Newton’s method to optimizer our loss function

Newton’s method uses second-order partial derivatives (Hessian matrices) to
characterize the curvature of the loss function.

k
L= > lIx—ul’

Expectation step: y; «— arg min ||X; — //tl-H%

Example: Newton’s method

Goal: Use Newton’s method to optimizer our loss function

Newton’s method uses second-order partial derivatives (Hessian matrices) to
characterize the curvature of the loss function.

k
L= > lIx—ul’

Expectation step: y; «— arg min ||X; — //tl-H%

4 0L
ou,;

Maximization step: y; < y, — [

Example: Newton’s method

Autograd: demo

K-means clustering with Newton’s method

JAX

JIT
compilation

Binary cross-entropy loss for
logistic regression

Principal component analysis

JAX

JIT
compilation

Binary cross-entropy loss for Pairwise Euclidean distances
logistic regression between vectors

Principal component analysis K-means clustering

JAX

JIT

compilation Autograd

Binary cross-entropy loss for Derivatives of polynomials Pairwise Euclidean distances
logistic regression and piecewise functions between vectors

Principal component analysis Newton’s method K-means clustering

Other topics not covered here
e jax.scipy: SciPy API

 jax.pmap: parallel execution on multiple devices
 jax.lax: lower-level functions for more custom operations
 PyTrees: an essential data structure in Jax

 Random number generation

 Ahead-of-time compilation

e Forward- and reverse-mode autodiff

Why use Jax? Its ecosystem

* Flax: Neural network library
» Optax: Gradient processing and optimizers
« Jraph: Graph neural networks

 NumPyro: Probabillistic programming

 HuggingFace: Pretrained models

Why use Jax?

Why use Jax?

JAX, M.D.

A Framework for Differentiable Physics

Samuel S. Schoenholz Ekin D. Cubuk
Google Research: Brain Team Google Research: Brain Team
schsam@google.com cubuk@google.com

Molecular dynamics

Why use Jax?

JAX, M.D.

A Framework for Differentiable Physics

Samuel S. Schoenholz Ekin D. Cubuk
Google Research: Brain Team Google Research: Brain Team
schsam@google.com cubuk@google.com

Molecular dynamics

Structure prediction

Why use Jax?

End-to-end learning of multiple sequence
alignments with differentiable Smith—Waterman 3

Samantha Petti, Nicholas Bhattacharya, Roshan Rao, Justas Dauparas, Neil Thomas, Dlﬁerentlable mUItlple
Juannan Zhou, Alexander M Rush, Peter Koo, Sergey Ovchinnikov Seq uence alig nment
J AX, M,D, Bioinformatics, Volume 39, Issue 1, January 2023, btac724, https://doi.org/10.1093

/bioinformatics/btac724

A Framework for Differentiable Physics , S
Published: 10 November 2022 Article history v

Samuel S. Schoenholz Ekin D. Cubuk
Google Research: Brain Team Google Research: Brain Team
schsam@google.com cubuk@google.com

Molecular dynamics

Structure prediction

Why use Jax?

End-to-end learning of multiple sequence
alignments with differentiable Smith—Waterman 3

Samantha Petti, Nicholas Bhattacharya, Roshan Rao, Justas Dauparas, Neil Thomas, Dlﬁerentlable mUItlple
Juannan Zhou, Alexander M Rush, Peter Koo, Sergey Ovchinnikov Seq uence alig N ment
J AX, M,D, Bioinformatics, Volume 39, Issue 1, January 2023, btac724, https://doi.org/10.1093

/bioinformatics/btac724

A Framework for Differentiable Physics , S
Published: 10 November 2022 Article history v

Samuel S. Schoenholz Ekin D. Cubuk ih-— I
Google Research: Brain Team Google Research: Brain Team SCI b m et r I CS
schsam@google.com cubuk@google.com

Biological metrics

. and benChmarkS Accelerated and Python-only metrics for benchmarking single-cell integration outputs.
MOIeCUIar dynam Ics This package contains implementations of metrics for evaluating the performance of single-cell omics

data integration methods. The implementations of these metrics use jax when possible for jit-

compilation and hardware acceleration. All implementations are in Python.

A
TR

AlphaFold

Structure prediction

Why use Jax?

End-to-end learning of multiple sequence
alignments with differentiable Smith—Waterman 3

Samantha Petti, Nicholas Bhattacharya, Roshan Rao, Justas Dauparas, Neil Thomas,

Differentiable multiple

Juannan Zhou, Alexander M Rush, Peter Koo, Sergey Ovchinnikov Seq uence alig N ment
J AX, M,D, Bioinformatics, Volume 39, Issue 1, January 2023, btac724, https://doi.org/10.1093

/bioinformatics/btac724

A Framework for Differentiable Physics , S
Published: 10 November 2022 Article history v

Samuel S. Schoenholz Ekin D. Cubuk S Ci b — m et ri CS

Google Research: Brain Team Google Research: Brain Team

schsam@google.com cubuk@google.com _ _
= = = build 'passing | docs 'passing
Biological metrics

. and benChmarkS Accelerated and Python-only metrics for benchmarking single-cell integration outputs.
MOIeCUIar dynam Ics This package contains implementations of metrics for evaluating the performance of single-cell omics

data integration methods. The implementations of these metrics use jax when possible for jit-

compilation and hardware acceleration. All implementations are in Python.

Models ‘ ter by new Full-text search Tl Sort: Most Downloads

bert-base-uncased € jonatasgrosman/wav2vec2-large-xlsr-53-english

gpt2 x1lm-roberta-base La rge Iang uage
- | models

o
T

& microsoft/resnet-50 @ openai/clip-vit-large-patchl4

AlphaFold

Structure prediction

roberta-base distilbert-base-uncased

Thanks for listening! Questions?

Colab notebook: https://tinyurl.com/ccb-intro-to-jax

Email: martinkim (at) berkeley.edu

