
11 May 2023

Introduction to Jax
from the lens of
computational biology
CCB Skills Seminar
Martin Kim (Yosef Lab, UC Berkeley)

Link for following along
Colab notebook: https://tinyurl.com/ccb-intro-to-jax

https://tinyurl.com/ccb-intro-to-jax

Plan for today

What is Jax? Overview of its main features

Exploring its main features with an extended example

Why use Jax? Its ecosystem and some projects

What is Jax?
• Open-source machine learning library in Python developed by Google

What is Jax?
• Open-source machine learning library in Python developed by Google

• A scalable and flexible set of numerical transformations and compositions
on arrays

What is Jax?
• Open-source machine learning library in Python developed by Google

• A scalable and flexible set of numerical transformations and compositions
on arrays

• Composable gradient computations

What is Jax?
• Open-source machine learning library in Python developed by Google

• A scalable and flexible set of numerical transformations and compositions
on arrays

• Composable gradient computations

• Efficient linear algebra in multiple backends (CPU, GPU, TPU)

What is Jax?
• Open-source machine learning library in Python developed by Google

• A scalable and flexible set of numerical transformations and compositions
on arrays

• Composable gradient computations

• Efficient linear algebra in multiple backends (CPU, GPU, TPU)

• Flexible code compilation

What is Jax?
• Open-source machine learning library in Python developed by Google

• A scalable and flexible set of numerical transformations and compositions
on arrays

• Composable gradient computations

• Efficient linear algebra in multiple backends (CPU, GPU, TPU)

• Flexible code compilation

• Interface inspired by NumPy

What is Jax?
• Open-source machine learning library in Python developed by Google

• A scalable and flexible set of numerical transformations and compositions
on arrays

• Composable gradient computations

• Efficient linear algebra in multiple backends (CPU, GPU, TPU)

• Flexible code compilation

• Interface inspired by NumPy

• Emphasis on functional programming

Familiar API
import numpy as np
import jax.numpy as jnp

Familiar API
import numpy as np
import jax.numpy as jnp

z = np.dot(X, y)
z = jnp.dot(X, y)

Familiar API
import numpy as np
import jax.numpy as jnp

z = np.dot(X, y)
z = jnp.dot(X, y)

dist = np.linalg.norm(z - y)
dist = jnp.linalg.norm(z - y)

Familiar API
import numpy as np
import jax.numpy as jnp

z = np.dot(X, y)
z = jnp.dot(X, y)

dist = np.linalg.norm(z - y)
dist = jnp.linalg.norm(z - y)

a = np.reshape(X, (-1,))
a = jnp.reshape(X, (-1,))

Familiar API
import numpy as np
import jax.numpy as jnp

z = np.dot(X, y)
z = jnp.dot(X, y)

dist = np.linalg.norm(z - y)
dist = jnp.linalg.norm(z - y)

a = np.reshape(X, (-1,))
a = jnp.reshape(X, (-1,))

numpy.ndarray

jax.numpy.ndarray

JAX

JAX

JIT
compilation

Compiles user-written code
using various optimizations

from jax import jit

JAX

JIT
compilation Autograd

Compiles user-written code
using various optimizations

Computes gradients through
Jax and native Python code

from jax import gradfrom jax import jit

JAX

JIT
compilation Autograd XLA &

vectorization

Compiles user-written code
using various optimizations

Computes gradients through
Jax and native Python code

Provide efficient kernels and
automatic vectorization

from jax import grad from jax import vmapfrom jax import jit

Exploratory analysis of single-cell RNA-seq data
Subset of the human lung cell atlas (3000 cells x 2000 genes)

Extended example for today

Extended example for today

Single-cell RNA-seq data
Count matrix (cells by

genes)

Exploratory analysis of single-cell RNA-seq data
Subset of the human lung cell atlas (3000 cells x 2000 genes)

Single-cell RNA-seq data
Count matrix (cells by

genes)

PCA representation
Coordinate matrix (cells

by # of components)

Extended example for today
Exploratory analysis of single-cell RNA-seq data
Subset of the human lung cell atlas (3000 cells x 2000 genes)

Single-cell RNA-seq data
Count matrix (cells by

genes)

PCA representation
Coordinate matrix (cells

by # of components)

K-means clustering
Cluster assignments

for each cell

Extended example for today
Exploratory analysis of single-cell RNA-seq data
Subset of the human lung cell atlas (3000 cells x 2000 genes)

JIT compilation
Just-in-time compilation: Jax can compile code during the execution of a
Python program and cache functions

JIT compilation
Just-in-time compilation: Jax can compile code during the execution of a
Python program and cache functions

jit_my_func = jax.jit(my_func)

JIT compilation
Just-in-time compilation: Jax can compile code during the execution of a
Python program and cache functions

jit_my_func = jax.jit(my_func)

Applies optimizations such as:

JIT compilation
Just-in-time compilation: Jax can compile code during the execution of a
Python program and cache functions

jit_my_func = jax.jit(my_func)

Applies optimizations such as:

• Operation fusions

JIT compilation
Just-in-time compilation: Jax can compile code during the execution of a
Python program and cache functions

jit_my_func = jax.jit(my_func)

Applies optimizations such as:

• Operation fusions

• Removing redundant memory allocations

JIT compilation
Just-in-time compilation: Jax can compile code during the execution of a
Python program and cache functions

jit_my_func = jax.jit(my_func)

Applies optimizations such as:

• Operation fusions

• Removing redundant memory allocations

How it works: Jax drops an abstract array into the function and traces how it
is affected in order to optimize the function

JIT compilation: demo
Logistic regression cost function

JIT compilation
Works best when the function is:

JIT compilation
Works best when the function is:

• Complex with many sequential array operations

• More opportunities for optimizations

JIT compilation
Works best when the function is:

• Complex with many sequential array operations

• More opportunities for optimizations

• Called multiple times on inputs with the same shape and datatype

• Spreads out the initial overhead cost

JIT compilation
Works best when the function is:

• Complex with many sequential array operations

• More opportunities for optimizations

• Called multiple times on inputs with the same shape and datatype

• Spreads out the initial overhead cost

• e.g. forward pass or a gradient update to the parameters in an neural net

Goal: Compute the PCA representation of our data for visualization and
efficient clustering

Example: PCA

Goal: Compute the PCA representation of our data for visualization and
efficient clustering

Find the directions that capture the most variance in our data.n

Example: PCA

Goal: Compute the PCA representation of our data for visualization and
efficient clustering

Find the directions that capture the most variance in our data.

1.

n

U, Σ, V⊤ ← SVD(X)

Example: PCA

Goal: Compute the PCA representation of our data for visualization and
efficient clustering

Find the directions that capture the most variance in our data.

1.

2.

n

U, Σ, V⊤ ← SVD(X)

principal coordinates ← σ ⊙ U, diag(σ) = Σ

Example: PCA

Goal: Compute the PCA representation of our data for visualization and
efficient clustering

Find the directions that capture the most variance in our data.

1.

2.

3. take first principal coordinates

n

U, Σ, V⊤ ← SVD(X)

principal coordinates ← σ ⊙ U, diag(σ) = Σ

n

Example: PCA

JIT compilation: demo
Principal components analysis

XLA & vectorization
Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
code to device-specific kernels (CPU, GPU, TPU)

XLA & vectorization
Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
code to device-specific kernels (CPU, GPU, TPU)

jax.vmap allows us to take advantage of XLA without writing complicated
batched code by automatically vectorizing array operations

XLA & vectorization
Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
code to device-specific kernels (CPU, GPU, TPU)

jax.vmap allows us to take advantage of XLA without writing complicated
batched code by automatically vectorizing array operations

my_func # complex function only implemented for vectors

XLA & vectorization
Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
code to device-specific kernels (CPU, GPU, TPU)

jax.vmap allows us to take advantage of XLA without writing complicated
batched code by automatically vectorizing array operations

my_func # complex function only implemented for vectors

X = np.random.randn(1000, 1000)

XLA & vectorization
Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
code to device-specific kernels (CPU, GPU, TPU)

jax.vmap allows us to take advantage of XLA without writing complicated
batched code by automatically vectorizing array operations

my_func # complex function only implemented for vectors

X = np.random.randn(1000, 1000)

vmap_my_func = jax.vmap(my_func, in_axes=0)

XLA & vectorization
Accelerated Linear Algebra (XLA) is the compiler that dispatches Jax Python
code to device-specific kernels (CPU, GPU, TPU)

jax.vmap allows us to take advantage of XLA without writing complicated
batched code by automatically vectorizing array operations

my_func # complex function only implemented for vectors

X = np.random.randn(1000, 1000)

vmap_my_func = jax.vmap(my_func, in_axes=0)

result = vmap_my_func(X)

XLA & vectorization: demo
Pairwise Euclidean distances

Example: k-means clustering
Goal: Cluster our data using k-means for visualization and labeling

Example: k-means clustering
Goal: Cluster our data using k-means for visualization and labeling

Given data and fixed number of clusters :

Find that minimize

X ∈ ℝN×D k

μi

k

∑
i=1

∑
xj∈Si

∥xj − μi∥2
2

Example: k-means clustering
Goal: Cluster our data using k-means for visualization and labeling

Given data and fixed number of clusters :

Find that minimize

Expectation step:

X ∈ ℝN×D k

μi

k

∑
i=1

∑
xj∈Si

∥xj − μi∥2
2

yj ← arg min ∥xj − μi∥2
2

Example: k-means clustering
Goal: Cluster our data using k-means for visualization and labeling

Given data and fixed number of clusters :

Find that minimize

Expectation step:

Maximization step:

X ∈ ℝN×D k

μi

k

∑
i=1

∑
xj∈Si

∥xj − μi∥2
2

yj ← arg min ∥xj − μi∥2
2

μi ←
1

|Si | ∑
xj∈Si

xj

XLA & vectorization: demo
K-means clustering with Lloyd’s method

Autograd
Jax provides automatic differentiation as part of its core functionality:

grad_my_func = jax.grad(my_func)

derivative = grad_my_func(1.5)

Autograd
Jax provides automatic differentiation as part of its core functionality:

grad_my_func = jax.grad(my_func)

derivative = grad_my_func(1.5)

It is composable with all other core functions we’ve seen:

composed = jax.grad(jax.vmap(jax.jit(my_func)))

Autograd
Jax provides automatic differentiation as part of its core functionality:

grad_my_func = jax.grad(my_func)

derivative = grad_my_func(1.5)

It is composable with all other core functions we’ve seen:

composed = jax.grad(jax.vmap(jax.jit(my_func)))

Similar to JIT compilation, Jax traces the operations that affect a particular
value and then applies derivative rules.

Autograd: demo
Plotting simple functions and their derivatives

Goal: Use Newton’s method to optimizer our loss function

Example: Newton’s method

Goal: Use Newton’s method to optimizer our loss function

Newton’s method uses second-order partial derivatives (Hessian matrices) to
characterize the curvature of the loss function.

Example: Newton’s method

Goal: Use Newton’s method to optimizer our loss function

Newton’s method uses second-order partial derivatives (Hessian matrices) to
characterize the curvature of the loss function.

Expectation step:

ℒ =
k

∑
i=1

∑
xj∈Si

∥xj − μi∥2
2

yj ← arg min ∥xj − μi∥2
2

Example: Newton’s method

Goal: Use Newton’s method to optimizer our loss function

Newton’s method uses second-order partial derivatives (Hessian matrices) to
characterize the curvature of the loss function.

Expectation step:

Maximization step:

ℒ =
k

∑
i=1

∑
xj∈Si

∥xj − μi∥2
2

yj ← arg min ∥xj − μi∥2
2

μi ← μi − ℍ−1 ∂ℒ
∂μi

Example: Newton’s method

Example: Newton’s method

Autograd: demo
K-means clustering with Newton’s method

JAX

JIT
compilation

Binary cross-entropy loss for
logistic regression

Principal component analysis

JAX

JIT
compilation

XLA &
vectorization

Binary cross-entropy loss for
logistic regression

Principal component analysis

Pairwise Euclidean distances
between vectors

K-means clustering

JAX

JIT
compilation Autograd XLA &

vectorization

Binary cross-entropy loss for
logistic regression

Principal component analysis

Derivatives of polynomials
and piecewise functions

Newton’s method

Pairwise Euclidean distances
between vectors

K-means clustering

Other topics not covered here
• jax.scipy: SciPy API

• jax.pmap: parallel execution on multiple devices

• jax.lax: lower-level functions for more custom operations

• PyTrees: an essential data structure in Jax

• Random number generation

• Ahead-of-time compilation

• Forward- and reverse-mode autodiff

Why use Jax? Its ecosystem
• Flax: Neural network library

• Optax: Gradient processing and optimizers

• Jraph: Graph neural networks

• NumPyro: Probabilistic programming

• HuggingFace: Pretrained models

Why use Jax?

Why use Jax?

Molecular dynamics

Why use Jax?

Structure prediction

Molecular dynamics

Why use Jax?

Structure prediction

Molecular dynamics

Differentiable multiple
sequence alignment

Why use Jax?

Structure prediction

Molecular dynamics

Differentiable multiple
sequence alignment

Biological metrics
and benchmarks

Why use Jax?

Structure prediction

Molecular dynamics

Differentiable multiple
sequence alignment

Biological metrics
and benchmarks

Large language
models

Thanks for listening! Questions?
Colab notebook: https://tinyurl.com/ccb-intro-to-jax

Email: martinkim (at) berkeley.edu

